Journal of Organometallic Chemistry, 364 (1989) C5–C7 Elsevier Sequoia S.A., Lausanne – Printed in The Netherlands JOM 9769PC

Preliminary communication

Synthesis of anionic antimony-iron and bismuth-iron clusters

Montserrat Ferrer, Oriol Rossell *, Miquel Seco,

Departament de Química Inorgànica, Facultat de Química, Universitat de Barcelona, Diagonal 647, 08028 Barcelona (Spain)

and Pierre Braunstein

Laboratoire de Chimie de Coordination, UA 416 du CNRS, Université Louis Pasteur, 4 Rue Blaise Pascal, 67070 Strasbourg Cedex (France)

(Received October 31st, 1988)

Abstract

The anionic cluster $[ClSb{Fe(CO)_4}_3]^{2-}$ has been prepared by the reaction of SbCl₃ with $[HFe(CO)_4]^-$ and stabilized as its bis(triphenylphosphine)nitrogen(+1) (PPN⁺) salt. The synthesis of the analogous bismuth complex is also reported.

There is much current interest in the synthesis and reactions of transition-metal complexes containing atoms of the main-group elements. In the case of Group 5 elements, there is a very extensive chemistry involving phosphorus [1], but there are relatively few well-characterized carbonyl clusters containing the heavier members of the group especially antimony. To the best of our knowledge, the only structurally authenticated examples of iron-antimony compounds showing a nuclearity greater than two are the following; $[ClSb{Fe(CO)_2(\eta-C_5H_5)}_3]_2$ $[FeCl_4] \cdot CH_2Cl_2$ [2]; $[Cl_2Sb{Fe(CO)_2(\eta-C_5H_5)}_2][Sb_2Cl_7]$ [3]; $[Fe_2(CO)_8{\mu-SbCH(SiMe_3)_2}]$ [4]; $[Fe_2(CO)_8{(\mu_4-Sb)}_2[Fe_2(CO)_6]$ [5a,b]; $[Et_4N][Fe_3(CO)_9{(\mu-CO)}{\mu_3-SbFe(CO)_4}]$, and $[Et_4N]_2[Fe_3(CO)_9{\mu_3-SbFe(CO)_4}_2]$ [6].

In continuation of our studies on (transition-metal)-main group complexes [7], we report here the synthesis of the first open anionic Fe/Sb cluster $(PPN)_2[ClSb{Fe-(CO)_4}]_3]$.

Treatment of SbCl₃ with (PPN)[HFe(CO)₄] in a 1/3 mole ratio in THF at -40 °C affords a reddish-brown solution from which the complex (PPN)₂[ClSb-{Fe(CO)₄}₃] (1) can be isolated by evaporation of the solvent as red microcrystals in yields of about 55% based on antimony. A similar reaction involving BiCl₃ instead of SbCl₃ leads to bright black microcrystals of (PPN)₂[ClBi{Fe(CO)₄}₃] (2). Both products are formed in lower yields if a smaller mole ratio is used. Complexes 1 and 2 have been characterized by elemental analyses and infrared spectra. The

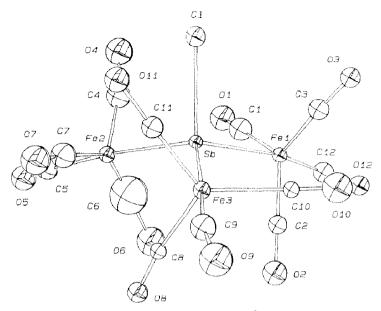


Fig. 1. Structure of the anion $[ClSb{Fe(CO)_4}_3]^2^-$. Selected dimensions are as follows: Sb-Fe(1) 2.55, Sb-Fe(2) 2.54, Sb-Fe(3) 2.56, Sb-Cl 2.45 Å; Fe(1)-Sb-Fe(2) 114, Fe(1)-Sb-Fe(3) 115, Fe(2)-Sb-Fe(3) 116, Cl-Sb-Fe(1) 104, Cl-Sb-Fe(2) 102, Cl-Sb-Fe(3) 101°.

identical ν (CO) pattern of the two complexes as solids (KBr, 1: 2015w; 1991vs; 1905vs,br; 1900sh; 2: 2015w; 1985vs; 1905vs,br; 1895sh cm⁻¹) and in solution (THF, 1: 2009w; 1989vs; 1922vs; 1906s; 2: 2010w; 1985vs; 1920vs; 1905s cm⁻¹) indicates that they must be closely structurally related. The skeleton of 1 has been established by a preliminary X-ray crystal structure determination *. The structure of 1 consists of discrete [ClSb{Fe(CO)₄}₃]²⁻ anions, PPN⁺ cations, and solvent molecules. Figure 1 shows the structure of the anion, which has three iron atoms bonded to the central antimony atom in a distorted tetrahedral arrangement. The average Fe–Sb bond length of 2.55 Å is close to that in the triiron-antimony cluster cation [ClSb{Fe(CO)₂(η -C₅H₅)₃]⁺ (2.54 Å) [2]. The Sb–Cl bond length (2.45 Å) is normal.

Interestingly, 1 was found to react with $[Cu(CH_3CN)_4]^+ BF_4^-$ to give the cluster $[Fe_2(CO)_8(\mu_4-Sb)]_2[Fe_2(CO)_6]$ (3), which was recently independently described by two groups [5]. Since in one of these reports [5b] 3 was obtained by adding $[Cu(CH_3CN)_4]^+ BF_4^-$ to an acetone solution produced by mixing SbCl₃ and $[Fe_2(CO)_8]^{2^-}$, it was expected that the species present in that solution, and responsible for its dark colour, could be 1. That this is the case is confirmed by the

^{*} Crystal data for 1 · THF, Et₂O = C₉₂H₇₈ClN₂O₁₄P₄Fe₃Sb, M = 1884.29, monoclinic, space group $P2_1/c$. a 12.912(4), b 27.567(4), c 24.634(4) Å, β 92.16(2)°, U 8762 Å³, Z = 4, D_C 1.428 g cm⁻³, μ (Mo- K_{α}) 9.57 cm⁻¹, λ (Mo- K_{α}) 0.71069 Å. Intensities of 5130 reflections with $2 < \theta < 20^3$ were measured on an Enraf–Nonius CAD4 diffractometer, $\theta/2\theta$ scan mode with ω scan width = 1 + 0.343 tan θ , scan speed 2.06 deg mm⁻¹. One of the standard reflections showed a 49% loss in intensity and the data collection was therefore ended at this stage. The metal atoms were found by direct methods [8]. Calculations were performed by use of the Enraf–Nonius SDP/VAX package. The structure was refined by full matrix least squares using 2911 data with $I > 3\sigma(I)$ to R = 0.13. Isotropic thermal parameters were assigned to all atoms [9].

indentity of the IR spectra of $SbCl_3/[Fe_2(CO)_8]^{2-}$ and 1. Further work in this area is in progress.

Acknowledgements. We thank the Dirección General de Investigación Científica y Técnica (DGICYT Project PS87-0006) for financial support and Prof. J. Fischer (Strasbourg) for preliminary X-ray data.

References

- 1 See for example, (a) O.J. Scherer, Angew. Chem. Int. Ed. Engl., 24 (1985) 924; (b) K.H. Whitmire, J. Coord. Chem., 17 (1988) 95.
- 2 Trinh-Toan and L.F. Dahl, J. Am. Chem. Soc., 93 (1971) 2654.
- 3 F.W.B. Einstein and R.D.G. Jones, Inorg. Chem., 12 (1973) 1690.
- 4 A.H. Cowley, N.C. Norman, M. Pakulski, D.L. Bricker, and D.H. Russell, J. Am. Chem. Soc., 107 (1985) 8211.
- 5 (a) A.M. Ariff, A.H. Cowley, and M. Pakulski, J. Chem. Soc. Chem. Commun., (1987) 622; (b) A.L. Rheingold, S.J. Geib, M. Shieh, and K.H. Whitmire, Inorg. Chem., 26 (1987) 463.
- 6 K.H. Whitmire, J.S. Leigh, S. Luo, M. Shieh, M.D. Fabiano, and A.L. Rheingold, Nouv. J. Chem., 12 (1988) 397.
- 7 M. Ferrer, O. Rossell, M. Seco and P. Braunstein, in preparation.
- 8 G. Germain, P. Main, and M.M. Woolfson, Acta Crystallogr. A, 27 (1971) 368.
- 9 J. Fischer, private communication.